Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level in Mechanics (WME01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023
Question Paper Log Number 74321
Publications Code WME01_01_rms_20240118
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

The total number of marks for the paper is 75 .
Edexcel Mathematics mark schemes use the following types of marks:
'M' marks
These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation, e.g. resolving in a particular direction; taking moments about a point; applying a suvat equation; applying the conservation of momentum principle; etc.

The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) each term needs to be dimensionally correct

For example, in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.
' M ' marks are sometimes dependent (DM) on previous M marks having been earned, e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.
' A ' marks
These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. e.g. MO A1 is impossible.
'B' marks
These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph).
A and B marks may be f.t. - follow through - marks.

General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod means benefit of doubt
- ft means follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao means correct answer only
- cso means correct solution only, i.e. there must be no errors in this part of the question to obtain this mark
- isw means ignore subsequent working
- awrt means answers which round to
- SC means special case
- oe means or equivalent (and appropriate)
- dep means dependent
- indep means independent
- dp means decimal places
- sf means significant figures
- * means the answer is printed on the question paper
- \square means the second mark is dependent on gaining the first mark

All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(NB specific mark schemes may sometimes override these general principles)

- Rules for M marks:
- correct no. of terms;
- dimensionally correct;
- all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark, i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF .
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c)...then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft

Mechanics Abbreviations

M(A) Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS Right hand side
LHS Left hand side

QUESTION NUMBER	SCHEME	MARKS
2(a)	$v=u+a t: \quad w=8+(-0.5)(4)$ (the value of w may not be seen)	M1
	$v=u+a t: \quad v=w+(1.2)(10)$	M1
	$v=18$ *	A1*
		(3)
2(b)		B1 shape B1 time labels 4,10,20 B1 speed labels 6, 8, 18
		(3)
2(c)	Clear attempt to find distance using the area under their graph from $t=0$ to $t=20$ or another suitable method, even if they are using the wrong shapes. $\begin{aligned} & \text { Distance }=\frac{(8+" 6 ") \times 4}{2}+(6 \times " 6 ")+\frac{(" 6 "+18) \times 10}{2} \\ & \text { OR }=(6 \times 4)+\frac{1}{2} \times 4 \times(8-6)+(6 \times 6)+(6 \times 10)+\frac{1}{2} \times 10 \times(18-6) \end{aligned}$	M1 A1ft A1ft
	$=184(\mathrm{~m})$	A1
		(4)
		(10)
	Notes for question 2	
(a)		
M1	Complete method for finding the velocity (w) when $t=4$ M0 if $u=0$. N.B. 6 on its own can imply this mark. Method completed to show the speed when $t=20 \mathrm{M} 0$ if initial speed is not w. Fully correct solution leading to given answer	
M1		
A1* (b)		
B1	Correct shape of graph	
B1	Correct time labels	
B1	Correct speed labels	
(c)	N.B. Solid vertical line(s) B0 for the shape.	
M1	Complete method to find distance travelled in 20 seconds. May use speed-time graph or suvat equations for three sections ($28 \mathrm{~m}, 36 \mathrm{~m}, 120 \mathrm{~m}$) of the journey. Award this mark for a clear attempt to find the area and penalise errors in the A marks. M0 if graph does not have three sections.	
A1ft	Equation with at most one error, ft their " 6 "	
A1ft	Correct equation, ft their " 6 "	
A1	Correct final answer	

QUESTION NUMBER	SCHEME	MARKS
3		
3(a)	$10 \times 1.8=(0.2+1.8) v$	M1
	$v=9$ (positive)	A1
		(2)
3(b)	For tent peg, $\quad I= \pm 0.2(v-0)$ or For hammer, $-I= \pm 1.8(v-10)$	M1 A1
	1.8 Ns OR $1.8 \mathrm{kgms}^{-1}$ units needed.	A1
		(3)
3(c)	$0=9^{2}+2 a(0.12) \quad$ OR $\quad 0=9^{2}-2 a(0.12)$	M1A1
	$2 g-R=2 a \quad R-2 g=2 a$	M1 A1
	$R=690$ or 695	A1
		(5)
	N.B. Using $u=10$ for 9 can score M0A0M1A1A0 max	
	Using $s=12, \quad$ can score M1A0M1A1A0 max	(10)
ALT 1	$0.12=\frac{(9+0)}{2} t$	M1A1
	$(R-2 g) t=2 \times 9$	M1A1
	$R=690$ or 695	A1
ALT 2	$0.12 R=\frac{1}{2} \times 2 \times 9^{2}+2 g \times 0.12$	M2A2
	$R=690$ or 695	A1
	Notes for question 3	
(a)		
$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { (b) } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & \text { (c) } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Forms CLM equation, condone sign errors and extra g 's and any correct cancellation cao Impulse-momentum equation, dimensionally correct, correct no. of terms. Condone sign errors. N.B. M0 if g is included. A1 correct unsimplified equation A1 cao must include units. Equation formed to find the acceleration. Must be dimensionally correct and have the correct no. of terms. Correct unsimplified equation. Note $a=-337.5$	

\(\left.$$
\begin{array}{l|l|}\text { M1 } & \begin{array}{l}\text { Use of } F=m a . \text { Must be dimensionally correct and have the } \\
\text { correct no. of terms. } \\
\text { Correct equation, } a \text { does not need to be substituted but should } \\
\text { be consistent with their } a \text { from first equation. } \\
\text { N.B. Use the equation for } a \text { to define the positive direction. } \\
\text { cao }\end{array} \\
\text { A1 } & \begin{array}{l}\text { ALT 1 } \\
\text { Equation(s) formed to find the time } \\
\text { Correct unsimplified equation. Note } t=\frac{2}{75}=0.02666 . .\end{array} \\
\text { M1 } \\
\text { A1 } & \text { M1 }\end{array}
$$ \begin{array}{l}Use of imp-mom equation. Must be dimensionally correct and

have the correct no. of terms.

Correct equation, t does not need to be substituted but should

be consistent with their t from first equation.

cao\end{array}\right\}\) A1 | A1 | |
| :--- | :--- |
| ALT 2 | Use of work-energy equation. Must be dimensionally correct
 and have the correct no. of terms.
 Correct unsimplified equation, -1 each error.
 cao |
| A2 | |

$\begin{aligned} & \hline \text { QUESTION } \\ & \text { NUMBER } \\ & \hline \end{aligned}$	SCHEME	MARKS
4(a)	$(5 \mathbf{i}-8 \mathbf{j})+5(-\lambda \mathbf{i}+2 \lambda \mathbf{j})\left(\mathrm{m} \mathrm{s}^{-1}\right)$ isw	M1 A1
		(2)
4(b)	$13=\sqrt{(5-5 \lambda)^{2}+(-8+10 \lambda)^{2}}$	M1 A1
	$169=25-50 \lambda+25 \lambda^{2}+64-160 \lambda+100 \lambda^{2}$	
	$25 \lambda^{2}-42 \lambda-16=0 *$	A1* cso
		(3)
4(c)	($-2 \mathbf{i}+4 \mathbf{j}$) seen or implied	B1
	$(5 \mathbf{i}-8 \mathbf{j})+(-2 \mathbf{i}+4 \mathbf{j}) 4$	M1A1
		M1
	339°	A1
		(5)
		(10)
	Notes for question 4	
(a)		
M1	Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ to form a vector expression in λ and t	
A1	Correct unsimplified expression with $t=5$ N.B. Allow use of column vectors for the M mark but not for the A mark.	
(b)		
M1	Collect i's and \mathbf{j} 's and correct use of Pythagoras to form an equation in λ	
A1	Correct equation	
A1*	cso. Expand brackets and correctly reach the GIVEN answer. N.B. Allow $0=25 \lambda^{2}-42 \lambda-16$	
(c)		
B1	Or column vector	
M1	Complete method to find the velocity when $t=4$.	
A1	Correct unsimplified expression. Note the correct velocity is $\mathbf{v}=-3 \mathbf{i}+8 \mathbf{j}$	
M1	Use their velocity vector at $t=\mathbf{4}$ with trig to find a relevant angle.	
A1	Cao. Degrees sign not required. N.B. if they work with both values of λ, can score max all the marks except the last one.	

$\begin{aligned} & \text { QUESTION } \\ & \text { NUMBER } \end{aligned}$	SCHEME	MARKS
6(a)	$\frac{(20 \mathbf{i}+34 \mathbf{j})-(15 \mathbf{i}+36 \mathbf{j})}{0.5} \text { oe }$	M1
	$(10 \mathbf{i}-4 \mathbf{j})^{*}$	A1*
		(2)
6(b)	$(15 \mathbf{i}+36 \mathbf{j})+t(10 \mathbf{i}-4 \mathbf{j})$	M1 A1
		(2)
6(c)(i)	Verify using $t=1.5$ in \mathbf{p} or \mathbf{q} $\begin{aligned} & \mathbf{p}=(15 \mathbf{i}+36 \mathbf{j})+1.5(10 \mathbf{i}-4 \mathbf{j})=30 \mathbf{i}+30 \mathbf{j} \\ & \mathbf{q}=(42-8 \times 1.5) \mathbf{i}+(9+14 \times 1.5) \mathbf{j}=30 \mathbf{i}+30 \mathbf{j} \end{aligned}$	M1 A1 A1
(ii)	$30 \mathbf{i}+30 \mathbf{j}$	A1 (B1)
	N.B. The A mark for (ii) is now to be treated as a B mark.	
		(4)
ALT1 (i)	Find t by equating ior \mathbf{j} components of \mathbf{p} and \mathbf{q}	M1 A1 A1
(ii)	$30 \mathbf{i}+30 \mathbf{j}$	A1 (B1)
ALT2 (i)	Uses ratio: $\frac{15+10 t}{36-4 t}=\frac{42-8 t}{9+14 t}$ $\rightarrow t=1.5 \text { or }-8.5$ verifies that components are both 30 at $t=1.5$	M1 A1 A1
(ii)	$30 \mathbf{i}+30 \mathbf{j}$	A1 (B1)
		(4)
6(d)	Position of P at 14:30 is $40 \mathbf{i}+26 \mathbf{j}$	B1
	$\begin{aligned} & \text { Position of } Q \text { when } t=0.5 \\ & \qquad \begin{array}{c} \mathbf{q}=(42-8 \times 0.5) \mathbf{i}+(9+14 \times 0.5) \mathbf{j} \\ \\ (=(38 \mathbf{i}+16 \mathbf{j})) \end{array} \end{aligned}$	M1
	15j seen or implied	B1
	New position of Q at time 14:30 $\mathbf{q}=(38 \mathbf{i}+16 \mathbf{j})+2(15 \mathbf{j})$ N.B. M0 if 2.5 is used.	M1
	$\mathbf{q}=38 \mathbf{i}+46 \mathbf{j}$	A1
	$\|P Q\|=\sqrt{(40-38)^{2}+(26-46)^{2}}$	dM1
	$=\sqrt{404}$ or $2 \sqrt{101}(\mathrm{~km})$	A1
		(7)
		(15)

QUESTION NUMBER	SCHEME	MARKS
7(a)(i)	For $A: \frac{4 m g}{3}-m g \sin \alpha-F=m a$	M1A1
	$R=m g \cos \alpha$	M1 A1
	Use of $F=\frac{1}{3} R$ in an equation.	M1
	$a=\frac{11 g}{15} \quad$ or $0.73 g$ or better	A1
(ii)	For $B: k m g-\frac{4 m g}{3}=k m a$	M1 A1
	$k=5$	A1
	N.B. Either equation of motion could be replaced by a whole system equation: $k m g-m g \sin \alpha-F=(k+1) m a$	
		(9)
7(b)	Complete method to find resultant force $2 T \cos \left(\frac{90^{\circ}-\alpha}{2}\right)$	M1 A1
	Substitute $T=\frac{4 m g}{3}$ and trig $\frac{32 \mathrm{mg}}{15}$ or 2.1 mg or better.	dM1 A1
ALT 1	Use of cosine rule: $\sqrt{T^{2}+T^{2}-2(T)(T) \cos (90+\alpha)}$	M1 A1
ALT 2	Use of vert and horiz components to find the resultant: $\sqrt{(T \cos \alpha)^{2}+(T+T \sin \alpha)^{2}}$	M1 A1
		(4)
		(13)
	Notes for question 7	
(a) M1	For A use $F=m a$ parallel to the plane. Must be dimensionally correct and have correct no of terms. Condone sin/cos confusion. N.B. If they use T in this equation and never replace it, allow M1. Correct unsimplified equation. N.B. a could be replaced by $-a$ Resolve perpendicular to the plane Must be dimensionally correct and have correct no of terms. Condone sin/cos confusion. Correct equation Use of $F=\frac{1}{3} R$ Correct answer For B use $F=m a$ vertically. Must be dimensionally correct and have correct no of terms. Condone sin/cos confusion. N.B. Must have $k m$ on both sides for this mark. N.B. If they use T in this equation and never replace it, allow M1. Correct unsimplified equation N.B. a could be replaced by $-a$, but must be consistent with the equation for A. correct answer	
A1		
M1		
A1		
M1		
A1		
M1		
A1		
A1		

(b) M1 \quad Complete method to find resultant force on pulley, allow sin/cos confusion
A1 Correct expression
dM1 Substitute $T=\frac{4 m g}{3}$ and trig, dependent on previous M mark
A1
(b) ALT1

M1
A1
dM1

A1
(b) ALT2

M1
A1
Complete method, allow sin/cos confusion
A1
dM1
Correct expression

A1 Correct answer. Allow $\sqrt{\frac{1024 m^{2} g^{2}}{225}}$ or similar.

